
DEciding Equivalence Properties in SECurity protocols

User manual

version 2.0.0

Vincent Cheval, Steve Kremer and Itsaka Rakotonirina

Université de Lorraine, Inria Nancy Grand-Est, LORIA

April 26, 2020



Contents

Introduction 2
Scope of this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Download and installation 3
Installation of DeepSec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Upgrading OCaml using OPAM 1.x.x (Can be skipped if you already have ocaml 4.05 or later) 3

Upgrading OCaml using OPAM 2.x.x (Can be skipped if you already have ocaml 4.05 or later) 3

Installation of DeepSec from source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Installation of DeepSec UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Editor modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Tutorial 5
The Private Authentication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Modelling messages in DeepSec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Modelling protocols as processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Verifying private authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

More complex scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Speeding up the veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

The DeepSec User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Advanced options 21
Partial Order Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Choosing the semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Distributing the computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

The graphical User Interface 24
Start run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Batch, run and query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Details of a query: exploring attacks and equivalence proofs . . . . . . . . . . . . . 24

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Command-line options 27
General options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Options for distributing computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Language reference 29
Terms and patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



Introduction

The DeepSec prover is a veri�cation tool for cryptographic protocols. It allows the veri�cation of

security properties (expressed as trace equivalence) of protocols described in the applied pi calculus.

The tool operates in the so-called “bounded number of sessions” model: while it only allows to specify

a �xed number of participants and sessions, termination is always guaranteed (though computational

resources may be exhausted in practice if the model is too large).

Scope of this manual

This manual provides a “hands-on” introduction on how to use the tool. It provides intuitive ex-

planations of the language and the properties it permits to verify. It also explains the di�erent

options and provides a reference guide for the precise syntax. It however does not give formal

semantics nor explains the underlying algorithms. The theory underlying DeepSec is yet described

in (Cheval, Kremer, and Rakotonirina 2018a) and (Cheval, Kremer, and Rakotonirina 2019). Some

of the implementation choices are also discussed in a tool paper (Cheval, Kremer, and Rakotonirina

2018b).

Support

Please report any bugs to vincent.cheval@inria.fr or �le an issue on our github.

Acknowledgements

The research that led to DeepSec was primarily supported by ERC under the EU’s H2020 research

and innovation program (grant agreements No 645865-SPOOC), as well as from the French ANR

projects SEQUOIA (ANR-14-CE28-0030-01) and TECAP (ANR-17-CE39-0004-01).
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Download and installation

In this section we will guide you through the installation of the DeepSec prover and its graphical user

interface DeepSec UI. DeepSec can be used independently of DeepSec UI but the latter requires

the former to be installed.

Please install both so that you can test as many features as possible.

Installation of DeepSec

DeepSec requires OCaml > 4.05. It is highly recommended to install OCaml through opam instead

of a native package manager, such as apt-get (the latest version on apt-get may not be the latest

release of OCaml). opam itself may however be safely installed using your favorite package manager

(see instructions for installing opam). To know your current version of OCaml, just run ocaml
--version.

Upgrading OCaml using OPAM 1.x.x (Can be skipped if you already have ocaml
4.05 or later)

1. Run opam switch list (The version 4.05.0 should be displayed in the list. Otherwise run

�rst opam update).

2. Run opam switch 4.05.0 (or a more recent version).

3. Follow the instructions (at the end do not forget to set the environment by running eval
`opam config env`).

Upgrading OCaml using OPAM 2.x.x (Can be skipped if you already have ocaml
4.05 or later)

1. Run opam switch list-available (The version ocaml-base-compiler 4.05.0 should

be displayed in the list. Otherwise, �rst run opam update).

2. Run opam switch create 4.05.0 (or a more recent version).

3. Follow the instructions.

Installation of DeepSec from source

DeepSec requires the package ocamlbuild to compile which itself requires ocaml�nd. It is impor-

tant that both ocamlbuild and ocaml�nd are compiled with the same version of OCaml. Running opam
install ocamlbuild may not install ocaml�nd if an instance of ocaml�nd was installed on a dif-

ferent installation of OCaml (which sometimes happen on MacOSX). It is safer to run opam install
ocamlfind before. We plan to provide an opam package for DeepSec to ease the installation.

Summary:

1. Run opam install ocamlfind (Optional if already installed)
2. Run opam install ocamlbuild (Optional if already installed)
3. Run git clone https://github.com/DeepSec-prover/deepsec.git (with a HTTPS

connexion) or git clone git@github.com:DeepSec-prover/deepsec.git (with a SSH

connexion)

4. Inside the directory deepsec, run make
5. The executable program deepsec has been built.
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Note that two additional executables are compiled at the same time as deepsec: deepsec_worker
and deepsec_api. The former is used by DeepSec to distribute the computation on multi-core

architectures and clusters of computers. The latter is used to communicate with DeepSec UI. They
should not be used manually nor should they be moved from the deepsec folder.

Installation of DeepSec UI

DeepSec UI has been packaged so you don’t need to compile it from the source. Just download the

version according to your OS and double click. You can also directly visit DeepSec UI Releases to get

the lastest version. If you need another distribution, please feel free to ask (currently no windows

support. . . )

1. For MacOSX: deepsec-ui-1.0.0-rc3_OSX.dmg

2. For Linux:

• Debian: deepsec-ui-1.0.0-rc3_amd64.deb

• Snapshot: deepsec-ui-1.0.0-rc3_amd64.snap

• AppImage: deepsec-ui-1.0.0-rc3.AppImage

To work, DeepSec UI requires to know the location of the executable deepsec_api that was installed

by DeepSec. When DeepSec will be installed through opam in the foreseeable future, it will be

added in your PATH environment automatically and so DeepSec UI will �nd it automatically. Thus

currently, either you can add deepsec_api in your PATH or you can manually indicate to DeepSec
UI where it is located (in the Settings menu of DeepSec UI).

Editor modes

A dedicated package for syntax highlighting, language-deepsec, is available for installation within

atom. Given that the DeepSec input language is very close to the one used by the ProVerif veri�ca-

tion tool you may use the proverif mode (proverif-pi-mode) for emacs distributed with ProVerif.
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Tutorial

• Part 1: Modelling a protocol and a security property
1. The private authentication protocol (PAP)

2. Modelling messages in DeepSec

3. Modelling protocols as processes

4. Verifying private authentication

• Part 2: Veri�cation in practice
1. More complex scenarios

2. Speeding-up the veri�cation

3. The DeepSec User Interface

The Private Authentication Protocol

We will now explain protocol veri�cation in DeepSec through an example. As DeepSec specializes

in verifying equivalence properties, mainly used for modelling privacy preserving properties, we will

use the Private Authentication Protocol (PAP) as our example (Abadi and Fournet 2004). The protocol

can be described in “Alice & Bob” notation as follows:

A -> B: aenc( (Na,pk(skA)), pk(skB) )
B -> A: aenc( (Na,Nb,pk(skB)), pk(skA) ) if B accepts requests from A

aenc( Nb, pk(skB) ) otherwise

Alice (A) makes a connection request to Bob (B). For this Alice sends the asymmetric encryption

(aenc) of the pair (Na,pk(skA) with Bob’s public key (pk(skB)). Here Na is a fresh random nonce

and pk(skA) is Alice’s public key. The term pk(sk) denotes the public key corresponding to the

private key sk. Bob may accept requests from Alice or not.

The aim of the protocol is to conceal from outside observers whether Bob does accept connections

from Alice or not: this is called private authentication. If Alice is in the list of connections accepted

by Bob, Bob replies with the message aenc( (Na,Nb,pk(skB)), pk(skB) ), i.e. the encryption

of the tuple (Na,Nb,pk(skB)) (where Nb is a fresh nonce generated by Bob) with Alice’s public key

pk(skA). Otherwise, in order to hide the connection refusal, Bob sends a decoy message aenc( Nb,
pk(skB) ).

The modelling of the PAP protocol in DeepSec is available in the �le

Examples/tutorial/pap-1-session.dps

in the deepsec directory. We suggest that you move to that directory and make sure that the deepsec
executable is in your path.

Modelling messages in DeepSec

As in other symbolic models, protocol messages are modelled as terms. Therefore the �rst part of a

DeepSec �le consists in the necessary declarations. To model PAP we �rst declare a few constants.

free c.
free ska, skb, skc [private].

Here, c is a so-called free name: free names model public constants, that are known to the adversary.

In PAP c will be a channel name, as we will see below. On the other hand we need to declare secret
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keys. For this we use private names ska, skb, skc that are declared with the additional attribute

[private].

Next, we need to declare function symbols to represent asymmetric encryption.

fun aenc/2.
fun pk/1.

The function symbol aenc is declared to be of arity 2 using the notation /2. Public keys are of arity

1, as they are intended to take a secret key as argument.

Note: public names vs function symbols of arity 0

It is possible to declare function symbols of arity 0, e.g. write fun c/0, or const c. This is

equivalent to declaring a free name free c.

Note: alternate modelling of secret keys using private function symbols

In the modelling proposed above, we intend to compute the public key by applying the function pk
to the secret key, e.g. pk(ska) would be A’s public key. An alternate way of modelling can be to

derive both the public and secret key from an identity: we could declare a private function symbol

fun sk/1 [private].. Then, pk(a) and sk(a) represent A’s public, respectively private, key.

Declaring the function symbol sk as private implies that the attacker cannot apply this function

symbol.

Currently, we have declared function symbols aenc and pk, but nothing indicates that these functions

represent asymmetric encryption. We will use rewrite rules to give meaning to these function symbols.

reduc adec(aenc(x,pk(y)),y) -> x.

This rule indicates that an attacker can apply decryption adec; if the keys match (which is required

as we use the same variable y as arguments in encryption and decryption) then the result of applying

decryption returns the plaintext x.

Note: constructor-destructor algebras

You may have noticed that we did not declare the adec symbol. This is because adec is a destructor,
while declared function symbols are constructors. Destructors may actually not occur in protocol

messages: if the above rewrite rule does not succeed the evaluation will fail. For example, the

evaluation of the terms adec(aenc(m,pk(ska)),skb) and adec(c,ska) would both fail.

Note: deterministic vs randomized encryption

You may also note that we modelled encryption as a deterministic function. Of course, a secure

encryption scheme needs to be randomized, but in this particular example this simpli�ed version is

su�cient. This means in particular that the attacker can distinguish messages aenc(0,pk(ska))
and aenc(1,pk(ska)) where 0 and 1 are constants as he could simply re-encrypt these constants

(supposing he knows the public key). It is however easy to model asymmetric encryption by adding

a random element, making aenc a ternary function.

Note: multiple rewrite rules for a single destructor

Note that if a destructor function require several rewrite rules, they should be de�ned inside the

same reduc. For example:
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reduc
exists_double(x,x,y) -> ok;
exists_double(x,y,x) -> ok;
exists_double(y,x,x) -> ok.

Modelling protocols as processes

We now need to model the behaviour of Alice and Bob. One can think of a protocol as a distributed

program. Each local program of this system will be represented by a process. We can model Alice’s

role by the following process processA.

let processA(ska,pkb) =
new na;
out(c,aenc((na,pk(ska)),pkb));
in(c,x).

The process has 2 arguments: ska is the secret key of the agent running this process, and pkb
is the public key of the agent to whom we want to connect. First, the process generates a fresh

random nonce using the command new na. Next, it sends on channel c the encryption of the pair

(na,pk(ska)) encrypted with the recipient’s public key pkb, as dictated by the protocol. Finally, the

process expects an input, modelled as in(c,x). Normally, one would expect additional processing of

the input message, which we omit here for simpli�cation.

Note private names vs new names

In the above example we use new na to create a fresh, private name na. This is again equivalent

to declaring a free, private name, as we did for ska, skb and skb. However, the new construct

is useful when a di�erent, fresh name should be created in every instance of the process: if we

execute several instances of processA a distinct fresh name na is created in each copy.

Next, we model Bob’s behaviour by the process processB.

let processB(skb,pka) =
in(c,yb);
new nb;
let (yna,=pka) = adec(yb,skb) in

out(c,aenc((yna,nb,pk(skb)),pka))
else out(c,aenc(nb,pk(skb))).

This process introduces several new constructs that require explanations. The �rst action of the

process is to input a message on channel c through the instruction in(c,yb). As a consequence

the message that is received will be bound to the variable yb. While the expected message is

aenc((na,pka)),pk(skb)) we need to keep in mind that this message may actually be provided

by the attacker and may be an arbitrary message the attacker is able to forge. Therefore we need to

parse the message and perform a number of tests. All of this is done here in a condensed form using

a let instruction. We �rst decrypt (apply adec) the received message (referred to by the variable

yb) with the secret key skb. Note that if decryption fails, we will enter the else branch of the let
instruction. Next, we check that the results is a pair: the �rst element of the pair is bound to the

variable yna and we check that the second variable of the pair equals the public key pka, i.e., the

public key of a person we accept connections from. An expanded form could be written as follows.
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let yplain = adec(yb,skb) in
let (yna,ypka) = yplain in

if ypka = pka then
out(cb,aenc((yna,nb,pk(skb)),pka))

else out(cb,aenc(nb,pk(skb)));
else out(cb,aenc(nb,pk(skb)));

else out(cb,aenc(nb,pk(skb))).

This form is however rather lengthy and requires duplicating else branches, which is why the above

syntactic sugar is often convenient.

Note: tuples in DeepSec

We have seen in the above example that we used notations (a,b) and (a,b,c) for tuples without

explicitly declaring function symbols for pairs and triples. Actually, DeepSec has built-in support

for tuples. For each tuple of arity = occurring in the processes DeepSec will de�ne the constructor

(_, ... ,_) of arity n and corresponding destructors reduc proj_i_n (x1, ... ,xi, ...,
xn) = xi (for all 1 ≤ 8 ≤ =). These destructors are used implicitly in the let instruction for

projecting the elements of the tuple.

Finally, we put all the pieces together in main process ProcessAB modelling the entire system.

let ProcessAB =
out(c,pk(ska));
out(c,pk(skb));
out(c,pk(skc));
(

processA(ska,pk(skb)) | processB(skb,pk(ska))
).

The system �rst outputs the public keys, so that they become known to the attacker. Then the system

indicates that processes processA and processB are executed in parallel (each with its parameters).

Verifying private authentication

We are now interested in modelling anonymity. Anonymity is generally modelled as the indistin-

guishability of two systems. We therefore de�ne a second system ProcessCB.

let ProcessCB =
out(c,pk(ska));
out(c,pk(skb));
out(c,pk(skc));
(

processA(skc,pk(skb)) | processB(skb,pk(skc))
).

The di�erence with previous system ProcessAB is the parameter skc, rather than ska, given to

processA and processB. Hence, ProcessAB models the situation where B is willing to receive

connections only from A, while in ProcessCB, B accepts connections only from C. The goal of

private authentication is to hide from whom connections are accepted. Indistinguishability can be
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modelled by trace equivalence. We can therefore query DeepSec to check trace equivalence between

these two systems.

query trace_equiv(ProcessAB,ProcessCB).

To verify this query we use the command

$ deepsec pap-1-session.dps

DeepSec will indeed con�rm that this kind of anonymity is satis�ed by outputting (among some

other messages) that

Result query 1: The two processes are trace equivalent.

Looking at the protocol this is intuitively possible thanks to the decoy message sent in the

else branch of processB. What happens when we remove the decoy message? For this we

simply replace the else branch with else 0 (or, equivalently, omit it completely), see the �le

PrivateAuthentication-1session-attack.dps. We can now run DeepSec on this modi�ed

�le.

$ deepsec pap-1-session-attack.dps

This time, DeepSec will report an attack:

Result query 1: The two processes are not trace equivalent.

Indeed, when the attacker sends the message aenc((n,pk(ska)),pk(skb)) to B, only the �rst

system will send a reply.

Note: multiple input �les

DeepSec can take several �les as input. For example you may run

deepsec pap-1-session.dps pap-1-session-attack.dps

More complex scenarios

In the previous section we considered a very simple scenario and our veri�cation checked whether

private authentication holds when we have one instance of A and B. Often, protocols may be secure

when considering a single session, but attacks may arise when multiple sessions are executed in

parallel.

Let us see what happens when we consider two instances of each role resulting into the following

declarations.

let ProcessAB =
out(c,pk(ska));
out(c,pk(skb));
out(c,pk(skc));
(

processA(ska,pk(skb)) | processB(skb,pk(ska)) | // B expects to talk to A
processA(ska,pk(skb)) | processB(skb,pk(ska)) // B expects to talk to A

).

9



let ProcessCB =
out(c,pk(ska));
out(c,pk(skb));
out(c,pk(skc));
(

processA(skc,pk(skb)) | processB(skb,pk(skc)) | // B expects to talk to C
processA(ska,pk(skb)) | processB(skb,pk(ska)) // B expects to talk to A

).
Note: bounded replication

When considering multiple sessions it is common to put in parallel several identical in-

stances. For example, the process ProcessAB duplicates processA(ska,pk(skb)) and

processB(skb,pk(ska)). In more complex scenarios we may want to copy more processes

a large number of times. Therefore DeepSec provides a convenient operator !ˆn: !ˆn P is

syntactic sugar for n parallel copies of % where n is a positive integer. In the above example

processA(ska,pk(skb)) | processB(skb,pk(ska)) |
processA(ska,pk(skb)) | processB(skb,pk(ska))

could have been replaced by

!ˆ2 processA(ska,pk(skb)) | !ˆ2 processB(skb,pk(ska))

We can run

$ deepsec pap-2-session.dps

and observe that still no attack is found. However, the veri�cation time increases: while the result is

instantaneous for 1 session it now takes several seconds on a standard laptop. This is due to the fact

that DeepSec has to explore all possible interleavings, whose number is exponential.

While the veri�cation time is still moderate for 2 sessions this is not the case anymore when we add

a third session.

$ deepsec pap-3-session.dps

will take much longer. How can we ensure that the protocol cannot be attacked with 3 sessions, or

more?

Speeding up the veri�cation

Acceleration technique 1: distributing the computation

A �rst way to scale up is to distribute the computation. By default, DeepSec checks how many

physical cores your machine has and distributes the computation on these cores by creating the

same amount of workers. To activate the distributed computation with a di�erent number of workers,

deepsec should be run with the option -l n (or --local_workers n) where n is the number of

desired local workers.

It is also possible to distribute computation on several machines. To do so, deepsec requires an ssh

connexion between the localhost and the distant machine, using ssh key authentication, so that no

password is required. The computation on a distant machine is con�gured with the command line
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option -w <host> <path> <n> (or --distant_workers <host> <path> <n>). The parameter

<host> is the ssh login and address (e.g my_login@my_host). The parameter <path> should indicate

the path to the deepsec directory on the distant machine. Finally, the parameter <n> represents the

number of cores that should be dedicated by this distant machine to the computation of the input �le.

Note that the option -distant_workers must be used for each distant machine.

deepsec -w login1@host1 tools/deepsec 15 \
-w login2@host2 deepsec auto my_file.dps

In this command line, the �rst machine should be accessible with ssh login1@host1 and the

deepsec directory should be located at ~/tools/deepsec on this machine. Similarly, the second

machine should be accessible with ssh login2@host2 and the DeepSec directory should be located

at ~/deepsec. If the connexions to both machines are successful, DeepSec will distribute the

computation between the local and the 2 distant machines: 15 cores are used on the �rst machine

and, by specifying auto, all available physical cores on the second machine.

Important: The localhost and distant machines must have exactly the same version of DeepSec
(the Git hash is displayed when running deepsec without parameters or with the option --help),

compiled with the same version of OCaml.

Acceleration technique 2: session equivalence

Distribution of the computation may gain a constant speed-up factor: going from a 20 hours compu-

tation to a 1 hour computation is indeed much appreciated, but may not solve the more fundamental

problem of the exponential blowup.

This is why DeepSec proposes another, more e�cient proof technique. The underlying idea is to

prove a �ner equivalence relation, that we call equivalence by session. This equivalence signi�cantly

decreases the number of interleavings by exploiting the structure of the processes. Indeed, often, we

want to show the equivalence of processes that are of the form

let P = P1 | ... | Pn
let Q = Q1 | ... | Qn

The rough idea of equivalence by sessions is to match parallel sessions rather than individual actions.

Here, for instance, one may try to match all actions of P1 by all actions of say Q3, all actions of P2
by all actions of Q1, etc. DeepSec still needs to explore all possible such matches, but their number

is often lower by an exponential factor compared to the number of all possibles matches of actions.

Besides, this equivalence allows many more optimisations than the initial trace equivalence (see

Partial order techniques below).

For example, we may try to verify a complex scenario with 5 sessions on PAP.

$ deepsec pap-session-equiv-5-sessions.dps

Now this computation terminates in about a minute on a standard laptop (with two cores). Distributing

this computation could of course improve further the veri�cation time.

Note: Equivalence by session and false attacks

Why shouldn’t one always use the more e�cient equivalence by session ? As explained above

equivalence by session is a stronger equivalence than trace equivalence. Therefore whenever
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equivalence by session is satis�ed, trace equivalence also holds, but the converse may not be true.

Therefore equivalence by session may lead to a false attack (with respect to trace equivalence).

This is witnessed by the following small example

let P = out(c,a) ; out(c,a).
let Q = out(c,a) | out(c,a).
query trace_equiv(P,Q).
query session_equiv(P,Q).

and can be tested using DeepSec.

$ deepsec trace-vs-session.dps

Note: Syntactic restriction

The theory of equivalence by session requires that all channels are only (public or private) names

or constants, i.e., no complex terms, nor variables.

Acceleration technique 3: Partial-order reductions

Probably the most e�ective way to �ght state explosion are partial order reduction (POR) techniques.

Deepsec implements powerful POR optimisations, that were designed in (Baelde, Delaune, and

Hirschi 2015) for accelerating the decision of trace equivalence. These techniques are however only

sound on a class of action-determinate processes: a process is action determinate when it never can

reach a state where two outputs, or two inputs on a same channel are executable. Moreover, the

processes may not use private channels. A simple, su�cient criterion is to check that syntactically

no outputs on a same channel appear in parallel, and similarly for inputs, and that all channels are

public. Deepsec automatically checks this criterion, and when satis�ed applies POR techniques.

A pragmatic way to ensure action determinacy is to use a di�erent channel name for each process

in parallel. It is easy to modify the speci�cation of PAP in that way. This modelling allows for a

spectacular e�ciency gain. The veri�cation of a scenario with 9 sessions terminates in a few seconds.

$ deepsec pap-por-9-sessions.dps

Again, one may wonder why one should not always use di�erent channel names for parallel processes?

Intuitively, using di�erent channels for parallel sessions allows the attacker to identify the session

that has sent the message. While this works well for the PAP protocol, some protocols precisely rely

on this sender ambiguity to ensure some form of anonymity.

Note: POR, determinate processes and equivalence by session

As explained above, for proving trace equivalence, the partial-order reductions of DeepSec are

only sound for the class of determinate processes. The situation is actually simpler for equivalence

by session, for which these POR are sound for any process (Cheval, Kremer, and Rakotonirina

2019). However, as witnesses by the examples provided so far in this tutorial, proving trace

equivalence of determinate processes is signi�cantly faster than proving equivalence by session of

two non-determinate processes.

Note that combining the two acceleration techniques (i.e. proving the equivalence by session of

determinate processes) does not further improve the performances. It is indeed proved in (Cheval,

Kremer, and Rakotonirina 2019) that trace equivalence and equivalence by session coincide for

12



determinate processes, and DeepSec therefore uses the same algorithm for both equivalences

when determinacy is detected.

The DeepSec User Interface

DeepSec also comes with a graphical user interface (GUI). The GUI is intended to provide an easy

to use environment for using DeepSec, browsing the results and simulating attacks as well as

equivalence proofs.

The GUI is launched by executing the DeepSec UI application. This is a standalone application that

communicates with DeepSec by making calls to the deepsec_api executable. Therefore, you should

make sure that this executable is in your system path. (Otherwise we can manually con�gure the

path to deepsec_api, see below).

When launching DeepSec UI you should arrive at the following welcome screen.

From this screen you can navigate through the 3 main sections of the GUI (displayed on the left):

• Start Run

• Results

• Settings

Normally you should see a “pop-up” con�rming that deepsec_api has been successfully detected. If

not you will get a warning pop-up. This noti�cation only appears for a few second. If the executable

was not detected you may manually specify the path by clicking on Settings and providing the Absolute
Path of deepsec_api.
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You may test that the executable is indeed available in the speci�ed path by clicking on Check API.

We can now navigate back to the Start Run section and select the �les with the speci�cations to be

analysed. Let us select the pap-1-session and pap-1-session-attack that we used previously

(available in Examples/tutorial/ in the DeepSec folder). The GUI allows you to select multiple

�les and such a collection of �les is called a batch. Each �le of this batch is called a run and such a

run may contain multiple queries, as several queries may be speci�ed in a same �le.

In order to reference this batch we may provide a title, e.g. Tutorial. The Start Run section also

allows for more advanced settings (Semantics, Distributed), but we currently keep the default settings.
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We can now start the veri�cation by clicking on the Start Batch button. Pop-up windows will notify

about the status of the veri�cation.

Navigating to the results section we now see the list of all previous veri�cations including the Tutorial
batch.

Clicking on the tutorial batch we can display additional information. You may inspect the Run options

and Versions to see the precise parameters and software versions used to run this batch.

Clicking on pap-1-session and then Query 1 allows to reveal additional information about the

individual run and query.
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We can now inspect the Details of Query 1. The �rst part of the screen provides a summary of the

query, recalling the declarations of the �le and showing the result of the veri�cation.

The second part shows the two processes of the query.

16



We may note that all processes de�ned by a let ... = ... construct have been inlined. An

interesting functionality here is the Equivalence Simulator (click above the processes): it allows to

de�ne a trace on one process and have DeepSec �nd the equivalent trace on the other process.

“Playing around” with the processes should allow the user to understand why the two processes are

equivalent.

For instance, we could select a trace on Process 1. Available choices are highlighted and the user may

select one of them.

Initially, a single action out(c,pk(ska)); is available and there is no other choice than select this

one. This is a direct communication with the attacker on a channel; hence, the attacker needs to

provide a recipe to compute this channel name. As here it is a constant c the tool proposes the recipe

and we can simply validate. The three �rst actions do not o�er any choice, and we can select the trace

out(c,ax1) · out(c,ax2) · out(c,ax3)

resulting into the frame (which is the sequence of messages observed by an attacker spying on the

communication network):

ax1 -> pk(ska) · ax2 -> pk(skb) · ax3 -> pk(skc)

Next we have the choice between two actions out(c,aenc((na,pk(ska)),pk(skb))) and

in(c,yb). Let us �rst select the output and then the input in(c,yb). Here we need to provide

the recipe for the value to input (click on the “pencil”). Let’s say we want simply to forward
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the last output – the recipe for this is the last element of the frame and we may indicate ax_4.

We see that this input satis�es the test in the let construct. Now we can select the output

out(c,aenc((yna,nb,pk(skb)),pk(ska))) and require the tool to Find equivalent trace (above

Process 2).

We can now “walk through” the equivalent trace using the <Prev and Next> buttons. We see that

this results into a statically equivalent frame (i.e. a frame that is indistinguishable from the previous

one for an outside observer).

You may also try to see what happens if you use a di�erent recipe for in(c,yb):

aenc((#n,ax_1),ax_2)

In this recipe the attacker encrypts himself a fresh name #n of his own (fresh names are pre�xed

by #) and pk(a) (speci�ed by ax_1) with pk(b) (speci�ed by ax_2). While this results in the same

message (up to the nonce) as ax_4, i.e., aenc((na,pk(ska)),pk(skb)), in process 1 this is not the

case in process 2. Indeed, when requesting to �nd an equivalent trace we see that process 2 will

move into the else branch and send the decoy message aenc(nb,pk(skb)). Nevertheless, the two

resulting frames are statically equivalent.

We can now navigate to the pap-1-session-attack run and inspect the details og to Query 1.

This time the tool tells us it found an attack.

In particular we see that deepsec found the following trace in process 2

out(c, ax1); out(c,ax2); out(c,ax3); out(c,a42); in(c, aenc((#n0,ax3),ax2)); out(c,ax5)

that cannot be matched with an equivalent trace in process 1. The tool proposes to allows to explore

this trace in more detail by selecting Attack Trace.
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Using the <<, < Prev, Next > and >> buttons you may walk through the attack trace. Note that some

of the actions, such as new na and out(c,aenc((na,pk(skc)),pk(skb))); are packed together.

As the new na is not observable by the attacker the Default option is to always execute it with

the next visible action. By selecting All you may choose to execute each action individually, and

on the contrary selecting I/O directly moves to the next input or output. The Default option is a

compromise between executing all actions and moving directly to the next io.

We may also interact more interactively with this attack trace by selecting the Attack Simulator. This

allows us to manually try to simulate the attack trace from process 1 on process 2, and convince

ourselves that no equivalent trace exists.

Of course the simulator only allows us to select actions that follow the attack trace. On this example

we indeed end up in a situation where the last output of the trace of process 2 is not possible anymore

on process 1. Recall that in the original PAP this output is simulated by the decoy message.
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On other examples, some attacks may lead to frames that are not equivalent. In that case the tool

also provides a witness on how the frames can be distinguished.
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Advanced options

DeepSec provides a number of advanced options which require a bit more understanding of the

semantics and inner working of deepsec. Below we give a slightly more in-depth explanation and

pointers to relevant papers.

Partial Order Reductions

As explained in the tutorial, Partial Order Reductions (POR) are a technique to battle state explosion.

Given that the number of interleavings of parallel processes is exponential, POR techniques try

to avoid the need to explore all interleavings. For example, given actions 0, 1, 2, 3 , sometimes the

interleavings 0123 and 0213 may be completely equivalent in the sense that neither of them increases

the attacker’s power to distinguish. One may think of this as a partial order : we need to consider all

interleavings such that 0 < 1, 2 <3 where < is the precedence relation, but 1 and 2 are not ordered.

POR techniques then only explore one representative of each class of equivalent interleavings.

DeepSec implements the POR techniques presented in (Baelde, Delaune, and Hirschi 2015). The

techniques are correct for a class of action determinate processes, at least regarding trace equiva-

lence (they are correct for all processes when proving equivalence by session (Cheval, Kremer, and

Rakotonirina 2019)). Rather than checking determinacy directly, DeepSec checks a slightly stronger,

syntactic condition: there should not be two parallel processes that have two outputs, respectively

inputs, on the same channel, and all channels are public.

By default, the POR optimisation is activated automatically whenever this syntactic condition is

satis�ed. One can manually disable the POR optimization, using either the command line or the

graphical user interface. Note that even if POR is set manually to true, it does not change the behavior

of non determinate processes in order to guarantee soundness of the result.

Choosing the semantics

The applied pi calculus comes with formal semantics under the form of a transition relation between

processes (Abadi, Blanchet, and Fournet 2018). Minor, apparently insigni�cant variants have been

considered in the literature. In (Babel, Cheval, and Kremer 2020), typical small variants of the

semantics of public communications, occurring in the literature, are studied and 3 di�erent semantics

are considered:

• the classic semantics,

• the private semantics, and the

• eavesdrop semantics.

We will explain the di�erence between these semantics on an example.

let P = out(c,t).P1 | in(c,x).P2

We suppose that c is a public name, i.e., the channel is known to the adversary.

In the classical semantics, as de�ned in the original paper presenting the applied pi calculus (Abadi,

Blanchet, and Fournet 2018), the process P may reduce in di�erent ways:

• P may perform an internal communication and reduce to P1 | P2{t/x} that is the two parallel

processes perform the output and the corresponding input and the variable x is replaced by
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the term t in process P2; an important point is that this is an internal action and therefore not

visible to the adversary;

• P may perform a visible output on channel c and continue as P1 | in(c,x).P2, adding t to

the attacker knowledge;

• P may perform a visible input on channel c and continue as out(c,t).P1 | P2{u/x} where

u is a term provided by the attacker.

In the private semantics we remove the possibility of internal communication on a public channel.

Internal communications are only possible on private channels. These semantics have been considered

in many papers, because an adversary can explicitly forward the term t by successively performing a

visible output and a visible input with term t (which can be provided by the attacker as it was added

to his knowledge just before). An advantage of these semantics is that veri�cation is more e�cient as

less interleavings need to be considered.

While the two semantics are equivalent for reachability properties, they happen to be incomparable,

in general, when verifying trace equivalence (or other equivalences), as shown in (Babel, Cheval, and

Kremer 2020): two processes may be trace equivalent in the private semantics, but not in the classical

semantics, and vice-versa.

In the eavesdrop semantics, all three possible reductions of the classical semantics are considered.

However, when performing an internal communication on a public channel, this action becomes

visible to the attacker and the term is added to his knowledge.

Whenever trace equivalence holds in the eavesdrop semantics it also holds in both the classical and

private semantics. Therefore, veri�cation with the eavesdrop semantics is a conservative choice.

It was also shown in (Babel, Cheval, and Kremer 2020) that trace equivalence coincides on all three

semantics for the class of strongly determinate processes, that is the class on which DeepSec enables

POR techniques. The default semantics of DeepSec are the private semantics which yield more

e�cient veri�cation. The semantics can be modi�ed using either the command line or the graphical

user interface.

Distributing the computation

DeepSec allows to distribute the computation on multiple cores, as well as on multiple servers.

To explain the distribution we need to give a high-level overview on how DeepSec veri�es trace

equivalence.

To check trace equivalence DeepSec needs to compute a large symbolic execution tree, called the

partition tree: each path in this tree corresponds to a symbolic trace, i.e. a trace that may contain

non instantiated variables. Each node in the tree regroups the set of equivalent, symbolic processes,

after the execution of the symbolic trace leading to this node. Checking trace equivalence between

processes P and Q then consists in verifying that each node contains at least one process derived from

P and one derived from Q.

The main idea of the distribution is to let di�erent cores explore di�erent branches of the tree.

• The �rst step is the job creation: we generate, in a breadth-�rst manner, a number of nodes

whose subtrees need to be generated and explored. These nodes are stored in a queue and

called jobs. The number of such jobs that are initially generated
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• Next each worker, i.e., each core, fetches a job and veri�es the underlying subtree. When a job

is �nished, the worker fetches the next job in the queue.

• As the tree is not balanced, some jobs may require much more computation than others (and

we cannot predict wich jobs are taking more time). Therefore, some workers may become idle

while others still have a large subtree to verify. When a worker becomes idle, i.e., the queue of

pending jobs is empty, we start a timer: after the time-out we kill ongoing jobs, and start a

new job creation phase to distribute the computation of these remaining large subtrees. This is

called a new round.

The time-out before staring the next round avoids killing on-going work that is about to �nish and

get into a job creation – kill worker loop.

The command line and graphical user interface allow to set the values for

• the number of local and remote workers – when set to ‘auto’ all available, physical cores are

used;

• the minimum number of jobs created in the job creation phase – when set to ‘auto’ the number

of jobs is 100 × the total number of workers;

• the round timer – the default value is 120 seconds.
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The graphical User Interface

DeepSec comes with a Graphical User Interface (GUI). DeepSecUI is a standalone application that

interacts with the deepsec_api executable.

When launching the application you should see a pop-up message stating “DeepSec API version x.y.z
successfully detected”. This means that DeepSecUI was able to successfully locate the deepsec_api
executable. If you see a message “DeepSec API path is not set” you must either add the path to your

executable in your system PATH, or manually indicate Absolute Path of deepsec_api in the Settings.

The GUI should be rather intuitive and mostly self-explanatory if you are familiar with protocol

veri�cation. We document each of the sections of the GUI and its main items.

Start run

DeepSecUI allows to select several �les and run deepsec on these �les for veri�cation. Such a set of

�les is called a batch. Running deepsec on a single �le is called a run. Each �le may contain several

queries to be veri�ed.

The Select �les button allows to select one or more �les for a run, respectively batch. It is possible to

specify a title for a run or batch. If speci�ed, this title will be used in the Results section to refer to

the batch, or run.

One can also set the advanced options for the semantics and distributed computation as document in

Advanced options.

Results

The Results section displays a list of all previous veri�cation batches.

Batch, run and query information

Clicking on a particular batch in the list of all batches provides detailed information and results

regarding the selected batch. The detailed information includes

• a summary with general information such as the precise time, the veri�cation time and the

memory usage;

• all run options, regarding semantics, POR and distribution of computation;

• version information about the precise version of deepsec and the compiler.

These information are particularly useful for reproducibility, as well as for bug reporting.

Below the batch information it is possible to get information for each run. The information about a

run contains the �le name, number of queries and veri�cation time.

Clicking on a run displays the result for each query. Additional information (semantics, type,

ressources used) can be obtained by clicking on the query.

Details of a query: exploring attacks and equivalence proofs

By clicking on Details the tool provides additional information about the particular query. In particular

it displays a summary of the query and recalls the signature (the function declaration and rewrite
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system), and in case of an attack, the attack trace.

It also displays the processes on which the veri�cation was run and provides an equivalence, respec-

tively attack simulator.

• The equivalence simulator allows the user to select a trace of one of the processes, by selecting

a sequence of actions. The tool highlights available actions and the user chooses the next action.

Once the user has selected a trace, one may request the tool to �nd an equivalent trace on the

other process.

• The attack simulator allows the user to replay an attack: for an attack trace on one process, the

user select actions on the other process that follow the attack trace. This allows the user to

explore all possible available traces and convince the user that either no such trace exists, or

that all traces lead to frames that can be distinguished.

Selecting the actions requires a few additional explanations:

• The user may select the level of details of the actions: Default, I/O, and All. When I/O is

selected, only inputs and outputs are shown; internal g actions are executed tacitly. When

All is selected, the user also explicitly executes internal actions. Default is an intermediate

choice where some internal actions are executed automatically, while others need to be selected

explicitly. The I/O option is only available in case of an attack, not for an equivalence proof.

• Sometimes, when selecting an input, or an output, the user may choose between an internal

communication (matching directly an input and output of the process on a same channel) and

a communication with the attacker.

• When de�ning an attacker action in the equivalence simulator, it might be necessary to provide

the attacker computation, called the recipe. This is required to provide the computation of the

channel, for both inputs and outputs, as well as the term to be provided by the attacker for an

input. These recipes are terms built from the (public) function symbols and constants of the

signature, fresh names (pre�xed by a #, e.g. #n) and elements of the frame, referred to as ax_i.

Settings

The settings allow to con�gure the DeepSecUI environment.

• Show helpers allows to turn on and o� explanations that appear when you hover on options.

• Absolute Path of deepsec_api allows to set the path to the deepsec_api executable. This path

is set automatically when the executable is in the PATH of your system environment.

• Results directory provides information where data on all runs and results are stored.

• The Check API button allows to test whether the deepsec_api executable is available at the

path given above.

• The Noti�cation section allows to con�gure the behaviour of pop-up windows. One can de�ne

the duration a pop-up window appears, which result noti�cations should be noti�ed (batch, run,

query), and de�ne whether warning and error pop-ups should be “sticky”, i.e., only disappear

after manual removal. The behaviour can be tested using the Test Noti�cations button.
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• The Scan for new batch button allows to scan for batches and runs that were run using the

command line. These runs are then added to the list of batches in the Results section. When

the --title option is used with the command line, the provided title will be used in the list.
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Command-line options

Command-line options of DeepSec.

deepsec [OPTIONS] FILELIST

General options

-s, --semantics VALUE (default=private)
Specify the default semantics of the process calculus. VALUE must be one of ‘private’, ‘classic’ or

‘eavesdrop’. See Section Choosing the semantics for detailed explanations.

-p, --por BOOL (default=true)
Enable or disable Partial Order Reduction (POR) techniques for trace equivalence. BOOL must

be either ‘true’ or ‘false’. Note that even when set to ‘true’, POR techniques only apply to action

determinate processes. See Section Partial order reductions for detailed explanations.

-t, --title TITLE
Set a TITLE for this run (displayed only with the graphical user interface).

-q, --quiet
Only display the result of query veri�cation, and no information about rounds.

--trace
When an attack is found, display the attack trace. Incompatible with –quiet.

-h, -help, --help
Display information about command line options.

Options for distributing computation

-d, --distributed VALUE (default=auto)
Specify if the computation should be distributed. VALUE must be one of ‘auto’, ‘true’ or ‘false’.

When VALUE=‘auto’, the number of workers will be set to the number of avilable physical cores.

See Section Distributing the computation for detailed explanations. Note that when VALUE=‘true’,

deepsec activates the distributed computation even if your computer only has one core.

-l, --local_workers INT
Set the number of local workers to INT. If set, --distriburted is also set to ‘true’.

-w, --distant_workers HOST PATH VALUE
Allows to add distant workers on machine HOST. See Section Distributing the computation for

detailed explanations.

• PATH must be the path on HOST to the directory that contains the deepsec executable.

• VALUE must be either ‘auto’ or an integer, specifying the number of workers on HOST.
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When VALUE=‘auto’, the number of workers is set to the number of physical cores on the

distant machine.

Example: -w login@my_server.server.org ~/deepsec/ auto

Note: It is possible to rely on multiple distant machine by using several instances of

–distant_workers. Automatically sets –distributed to ‘true’.

Note: the host must be con�gured with SSH key-based authentication.

-j, --jobs INT
Specify the number of jobs to INT during the job creation phase. See Section Distributing the
computation for detailed explanations. Automatically sets --distributed to ‘true’. The default

number of jobs is 100 times the total number of workers.

-r, --round_timer INT (default=120)
Sets the round timer to INT seconds. See Section Distributing the computation for detailed explana-

tions.
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Language reference

We describe in details the grammar of DeepSec input �les. We use the following notations:

• X* denotes any (possibly zero) number of repetitions of X;

• {X} denotes that X is optional, i.e., zero or one occurence of X;

• seq X denotes a (possibly empty) comma separated sequence of X, i.e. seq X = {X (, X)*};

• seq+ X denotes a non-empty comma separated sequence of X, i.e. seq+ X = X (, X)*.

Moreover, we de�ne the following types.

• <ident> is the set of identi�ers that range over a sequence of letters (a-z, A-Z), digits (0-9),

underscores (_), single-quotes (’) where the �rst character of the identi�er is a letter and the

identi�er is distinct from the reserved words of the language.

• <sem> is one of classic, private, eavesdrop.

• <int> is a natural number.

A �le is a sequence of declarations (<decl>), process de�nitions (<proc_def>) and queries (<query>).

Terms and patterns

<term> ::= <ident>

| (seq+ <term>)
| <ident>(seq+ <term>)

<pattern> ::= =<term>

| <ident>

| (seq+ <pattern>)

Declarations

<decl> ::= set semantics = <sem>.

| fun <ident>/<int> {[private]}.
| const <ident> {[private]}.
| free <ident> {[private]}.
| reduc <term> = <term> (; <term> = <term>)*.
| reduc <term> -> <term> (; <term> -> <term>)*.

Processes

<proc_def> ::= let <ident>(seq <ident>) = < process >.

<process> ::= 0
| < ident>(seq <term>)
| <process> | <process>

| !ˆ<int> < process>

| (<process>)
| in(<term>,ident); <process>

| out(<term>,<term>); <process>

| new <ident>; <process>
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| let <pattern> = <term> in <process> {else <process>}

| if <term> = <term> then <process> {else <process>}

Queries

<query> ::= query trace_equiv (<process>,<process>).

| query session_equiv (<process>,<process>).

| query session_incl (<process>,<process>).

Comments

We allow 3 types of comments:

• all text following // on a given line is commented;

• all text between /* and */ is commented;

• all text between (* and *) is commented.
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